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Abstract. Ab initio molecular electronic structure cal-
culations are performed for H: at the QCISD(T) level of
theory, using a correlation-consistent quadruple-zeta
basis set. Structures, vibrational frequencies and ther-
mochemical properties are evaluated for ten stationary
points of the H{ hypersurface and are compared with
previous calculations. The features of the H7i ...H>
interaction at intermediate and large intermolecular
distances are also investigated. Furthermore, an analyt-
ical functional form for the potential-energy surface of
H{ is derived using a first-order diatomics-in-molecule
perturbation theory approach. Its topology is found to
be qualitatively correct for the short-range interaction
region.
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1 Introduction

Positively charged hydrogen clusters Hi - (Hz), repre-
sent one of the most simple and interesting examples of
the heterogeneous weakly- bound ion-molecular aggre-
gates suitable for modeling the nucleation dynamics in
stratospheric or interstellar conditions and for under-
standing the solvation mechanisms in liquids.

Since the detection of the first member of the series,
HZ, in 1962 [1], many experimental studies of dissocia-
tion energies and thermochemical properties of the H;"
clusters have been performed (reviewed in Refs. [2-4]).
One of the most detailed experimental studies was car-
ried out by Okumura et al. [2], using IR vibrational
predissociation spectroscopy. They observed the vibra-
tional frequencies of H, and Hi in Hj - (H,), ionic
clusters for n=1-6 and they analyzed the dependence of
the shift of these vibrations with the size of the cluster.
Numerous ab initio calculations have been carried out
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[3-8] aiming to determine their equilibrium structures,
low-lying stationary points and dissociation energies. A
very detailed ab initio investigation of the HI cluster
was carried out by Yamaguchi et al. [3]. They revealed a
quite complicated structure of the interaction potential:
ten distinct stationary points were located and analyzed
at ten different levels of theory. Their high-level calcu-
lations predicted a C,, structure as the only minimum.
Currently, equilibrium structures and energetics of HZ
and larger clusters remain a topic of intense attention
[9, 10]. In these studies calculations were carried out at
the MP2/MP4, CCSD(T) and G2(MP2) levels of theory
using the 6-311G™** basis set, in order to investigate the
shell structures and magic numbers in the stabilization
energy for H (H,),, (n = 1-9) clusters.

A more complicated and demanding theoretical task
is the construction of the global potential-energy sur-
faces (PESs) of H? and larger clusters. They are needed
in order to use H clusters as prototypes to explore
gas-phase solvation processes and to interpret various
experimental data on the dynamics of cluster fragmen-
tation [2, 11] and H7 + H, collisions [5, 12]. To our
knowledge, few attempts in this direction have been
performed so far. Ahlrichs [5], using PNO-CI and CEPA
methods, found the D,; structure to present the absolute
minimum on the H? surface. Further, he analyzed the
flatness of the PES in the vicinity of the D,,; configura-
tion and the mobility of the central proton. By
calculating the Hartree—Fock interaction energies of
isomeric H? structures, he also investigated the long-
range behavior of its PES. Nagashima et al. [4] described
the intermolecular Hj—H, potential (at frozen
configuration of the fragments) by a sum of site-site
interactions that was fitted to ab initio calculations. The
main difficulty in constructing a global PES is the choice
of a suitable analytical function, which should properly
reproduce the complicated PES topology at short and
intermediate ranges, as well as for the anisotropic long-
range interactions.

The aim of this study is to characterize low-lying
structures and the stability of the H? cluster, and to
provide a description of the Hj ...H, interaction at



intermediate and long intermolecular distances. For this
purpose, first we performed high-level ab initio calcula-
tions using the QCISD(T) method. We report here
theoretical predictions of the structures and energies of
ten low-lying conformers of HI, as well as a series
of QCISD(T) computations for various intermolecular
distances and relative orientations of H] and Hy in their
equilibrium geometries. Second, we derived an analytical
potential function using a first-order diatomics-in-mol-
ecule (DIM) perturbation approach in order to describe
the HJ ... H, short-range interaction.

2 Ab initio calculations
2.1 Computational methods

AbD initio calculations were performed using the Gauss-
ian 98 package [13]. The geometries of the H: stationary
points were optimized at the QCISD(T) level of
correlation treatment using cc-pVQZ, Dunning’s qua-
druple-zeta correlation-consistent basis set. Vibrational
frequency calculations were carried out at the same level
of theory and were used to characterize the stationary
points and to compute zero-point vibrational and
dissociation energies of Hy.

The accuracy of the present approaches for Hi and
H, monomers is indicated in Table 1, where the theo-
retical predictions of the QCISD(T)/cc-pVQZ calcula-
tions are compared with experimental data or best
theoretical values available from literature [14-17].
Vibrational frequencies are given in the harmonic ap-
proximation whenever possible. Anharmonic and scaled
frequency values are given in parentheses and brackets,
respectively. For our ab initio calculations the frequen-
cies are scaled by 0.9538 as recommended [18]. The
present calculations reproduce the properties of the
monomers very well. The geometric parameters are
reproduced within 0.004 A. The errors in the frequencies
with respect to the reference values amount to only
about 3 cm~! for the harmonic frequencies of H, and
to around 110 and 120 cm™! for Hj symmetric and
asymmetric modes, respectively.

2.2 Structures and energetics of H{

The geometry of HY is characterized using Cartesian
coordinates. For comparison with previous calculations
[3] we use only the following five coordinates: R;, R, are
the H—H bond lengths in the H{ monomer and o is the

Table 1. Equilibrium geometries, energies and frequencies of the
H7 and H, monomers calculated by the QCISD(T)/cc-pVQZ
method compared with the best available experimental and/or
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angle between them, P is the H—H bond length in the H,
monomer, and D is the intermolecular distance of one H
atom of H to the center of mass to H, for Cyy, Doy and
Dy, symmetries, as shown in Fig. 1. For different
symmetries D is the intermolecular distance between
the centers of mass of Hj and H» (Fig. 2).

The results of the QCISD(T)/cc-pVQZ calculations
for the optimized structures are summarized in Table 2
and depicted in Fig. 2. The present ab initio calcula-
tions reproduce all ten stationary points predicted by
Yamaguchi et al. [3] (we keep the designation intro-
duced by these authors), although they predict much
lower electronic energies and introduce some changes in
the energy order of the conformers. They keep the
energy separation of 0.006 au between the four low-
lying structures 1-4 and the other six. For the first four
conformers, the correspondence between the present
and previous ab initio results is remarkable, in partic-
ular, for the energy differences of the 1-C,,—2-D,; and
3-Cy,—4-Dy;, structures, which represent the barriers for
the proton transfer between two moieties in the planar
and nonplanar conformations. In contrast, the relative
order within the second group of structures, from 5 to
10, is different in our calculations. They predict a lower
relative energy for the 9-Cs structure and higher one for
the 6-C,, one. Comparing these optimized geometries
with the optimized geometries from full CI/DZP
calculations [3], we should notice that D is greater in
our calculations for the four lower-lying conformers
and is shorter for the higher-lying conformers, i.e. 9-Cj,
10-Cs,, 7-Cy,, etc.

The character of the stationary points, as well as the
corresponding harmonic vibrational frequencies, were
established through Hessian analysis. According to our
QCISD(T)/cc-pVQZ calculations, the 1-C,, structure is
the energetically lowest stationary point and is the only
true minimum among the ten stationary points. The
numbers of imaginary frequencies for the other struc-
tures are 1 for 2-D»,, 3-C5, and 5-C,,, 2 for 4-Dyy, 6-Cs,,
7-C,, and 9-Cy, 3 for 8-Cy,, and 4 for the 10-Cs,.

The results of the ab initio calculations on the vib-
rational frequencies of the 1-C», conformer of the H?
complex are presented in Table 3 for comparison with
the experimental data of Okumura et al. [2]. The values
in parentheses refer to scaled ab initio frequencies.
Using the scaling procedure, we get excellent agreement
with the experimental data. Our estimates lie (3928-
3910) = 18 em™! and (3532-3500) = 32 cm~' above
and below the assigned fundamentals of Okumura et al.
[2]. Our estimates for w3 and w4 in HY are much lower
than the corresponding degenerate asymmetric stretch-

theoretical values. The frequencies (w) given in parentheses refer to
anharmonic transition frequencies. Scaled ab initio frequencies are
given in brackets

Monomer Method Energy (au) Ryn (A) o (cm™h)

Hi Experiment or theory —1.343835 [14] 0.8770 [15] (3175-3188) [14] (2522) [15]
QCISD(T)/cec-pVQZ —-1.343110 0.8737 3437 [3279] 2772 [2644]

H, Experiment or theory —1.174475 [16] 0.7415 [16] 4401 (4161) [17] -
QCISD(T)/ce-pVQZ -1.173797 0.7419 4404 [4201] -
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Fig. 1. Schematic representation of coordinates for the HY cluster
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Fig. 2. Structures of the ten stationary points on the Hi surface as
predicted by ab initio calculations and the first-order diatomics-
in-molecule perturbation theory model. The distances are in
angstroms (see Tables 2, 5)

ing frequency of the Hj molecule at 2522 cm™', but not
to the same extent as the previous calculations [3].

This analysis as well as previous studies indicate that
H! forms a weakly bound ion cluster with only minor
changes in the Hj and H, geometries. For this reason we
performed a series of QCISD(T)/cc-pVQZ calculations
for various intermolecular distances and relative orien-
tations of H; and H; to give a description of the most
important mtermoleculdr interactions between H7 and
H,. We chose relative orientations for the Hy and H,
monomers according to the ten equilibrium Conformers
of HI. We performed calculations for the 1-Cy,, 3-Cay,
5-Cap, 7-C21,, 9-Cy, 6-C,, 8-C», and 10-Cj3, configurations
keeping H7 and H; in their equilibrium geometries and
varying the distance between their centers of mass R,
from 1.5 to 10 A. The equilibrium geometries for HY
and H; are taken from Table 1 according to our calcu-
lations. The results are presented in Fig. 3. We can
notice the importance of the long-range electrostatic
interactions for the different configurations. Among
them the dominant ones are the charge-induced
dipole(H;), Uy term

Uy = —[So+ 1 (o — 1 )Py(cos 0)] /R?
and the charge-(H,) quadrupole, U; term

Us = QOu, P>(cos (9)/R3 ,

where 0 is the angle between R and the H; bond, «,
and o, are the polarizabilities of the H, molecule, and
Ou, 18 its quadrupole moment.

Both the U, and Us terms are attractive for the 1, 3, 5,
7 and 9 cases and in contrast to cases 6, 8 and 10 the
charge-quadrupole term is repulsive. Consequently one
expects completely different behavior for the curves of
the previous two cases (Fig. 3). Evidently, attractive
forces are stronger when H, approaches a corner of Hy,
(cases 1, 3 and 6) than a side (cases 5, 7 and 8) of the H+
trldngle By comparing with the Hartree—Fock 1nterdc—
tion energies given by Ahlrichs [5], we note that for the
isomeric structures 1, 3, 5 and 7 the stabilization energies
are of the same order but we get significant differences
for cases 9, 6, 8 and 10. For these structures Ahlrichs
predicted binding energies 1 order of magnitude smaller
than in our calculations. Particularly, for the isomeric
structure 9 a very shallow potential curve was predicted
and for case 10 a repulsive curve. In contrast, we found
that for these structures the short-range forces of
chemical binding are not very small and are considerable
for case 9.

Finally, the dissociation energy of HI to Hy + H, is
reported in Table 4. Our predictions for D., Dy and AH®
based on the QCISD(T)/cc-pVQZ calculations are
compared with the data of different experimental [19-25]
and theoretical [3, 7, 9, 10, 26] studies. To calculate
vibrational zero-point energy corrections, both scaled
and unscaled harmonic frequencies can be used. The
latter values of Dy are given in parentheses. Temperature
corrections should not included, since a temperature of
298.15 K is close to the experimental values for Hi
(250-330 K, as established from the van’t Hoff plots
[24]). The enthalpy values, presented in brackets, are
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Table 2. Geometries and ener-

gies for ten stationary points on Conformer Energy (au)  Internal coordinates

the H? surface as predicted by : : : o

ab initio QCISD(T)/cc-pVQZ Ry (A) Ry (A) o (deg) D(A) P(A)

caleulations 1-Cs, ~2.530509  0.97704 0.81266 65.4 1.29177 0.76620
2-Dyy -2.530217  1.12502 0.78487 69.6 1.05436 0.78487
3-C, -2.530074  0.97008 0.81405 65.2 1.31711 0.76444
4-D,, ~2.529680  1.12726 0.78385 69.7 1.05694 0.78385
5-Cs, ~2.523476  0.87043 0.87236 60.1 2.05752 0.74974
7-Cs, -2.522890  0.86971 0.87222 60.1 2.10108 0.74874
9-C, ~2.520616  0.87119 0.87119 60.0 2.50385 0.74556
6-C, -2.520034  0.88870 0.85849 61.1 1.59985 0.74571
8-Cs, -2.518374  0.87351 0.87345 60.0 2.15673 0.74319
10-C3, -2.517594  0.87312 0.87312 60.0 2.52917 0.74195

Table 3. Experimental and the-

oretical frequencies (cm™") for Normal mode

Experiment [2]

Full CI/DZP [3]  QCISD(T)/cc-pVQZ

the monomers in HY (confor-
mer 1-Cs,). The scaled values in
parentheses are from Ref. [3]
and those in brackets are from
our calculations

H, stretch (wy)
H7 symmetric stretch (w,)
H7 asymmetric
stretch (ws)
H7 symmetric stretch (o)

3910 4198 (3844)
3532 3824 (3439)
- 2043 (1746)

- 1746 (1449)

4118 [3928]
3670 [3500]
2134 [2035]

1840 [1755]

DE /Kcal/mol

Fig. 3. Interaction energy for Hf ... H»
(kcal/mol). The relative orientations for the
two monomers are chosen from the ten

corrected to 153 K for comparison with other calcula-
tions. Our estimate is in very good agreement with ex-
perimental data and recent G2(MP2) level calculations

[°].
3 DIM PT1 interaction potential for HZ
3.1 Derivation of an analytical potential

The diatomics-in-molecule (DIM) approach provides an
attractive way to describe the PES of H, clusters.

9 conformers of HY (Fig. 2). R is the inter-
molecular distance connecting the centers of
mass of the Hf and H, monomers

Indeed, the H{ and H; molecules were the second
systems (after H,O) treated by DIM by its founders [27],
who later considered H; clusters as well [28]. It was
demonstrated [27, 29] that even the simplest DIM
formulation, which implements the minimum basis set
and neglects the overlap of atomic functions, gives quite
reasonable results for the Hy and Hj molecules. Later,
modified versions of the DIM method were used to
calculate multivalued [30] and reactive [31] PESs. Very
recent work by Aguado and coworkers [32, 33], where
Ellison’s DIM scheme was used to fit high-quality
ab initio calculations on HY, demonstrated that only a
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Table 4. Theoretical and ex-
perimental dissociation energies

and enthalpies (kcal/mol) for
HZ. The values in parentheses
are for unscaled harmonic fre-
quencies; The values in brackets
are for enthalpies corrected to
153K

small correction to the three-body (3B) interaction is
needed to bring the resulting PES into agreement with

Experiment or theory D. AZPE Dy —AH}
Arifov et al. (1971) [19] 51 £1.2
Bennet and Field (1972) [20] 9.7
Johnsen et al. (1976) [27] 8.1 £ 0.1
Elford (1983) [22] 58 £ 1.2
Beuhler et al. (1983) [23] 6.6 £ 0.3
Hiraoka (1987) [24] 6.9 + 0.3
Hiraoka and Mori (1989) [25] 7.0 £ 0.1
SCF/DZ — Yamaguchi et al. (1983) [6] 3.35
CI — Yamaguchi et al. (1987) [3] 8.34 2.89 5.45
DQMC — Pang (1994) [26] 53
DFT - Stich et al. (1997) [7] 14.5
G2(MP2) — Ignacio and Yamabe (1998) [9] 8.90 [6.20]
MP4/CCSD(T) — Barbatti et al. (2000) [10] 7.84/7.72 [6.91]
QCISD(T)/cc-pVQZ — this work 8.54 2.64 (2.77) 5.90 (5.76)  7.25[6.96]
and
Hy, = Hy — H, (4)

experimental data and other available potentials [34-36)].
In addition, the fragment nature of the DIM PTI1
method makes easy the extension of the model to larger
H7 ... (Ha), clusters.

For the present purpose, we ought to formulate the
simplest analytical DIM-based model and test its ability
to represent the HI PES. One candidate is a first-order
DIM perturbation theory (DIM PT1) which allows
the determination (to a first-order approximation) of
the interaction potential from the knowledge of (un-
perturbed) electronic wave functions of the monomers
[37-42].

Previous and the present ab initio results indicate that
the H? cluster ion could be considered as consisting of
HY and H, moieties relatively weakly bound with each
other We also assume that its ground state arises from
the interaction of two moieties in their ground singlet
states and ignore the contributions from all other elec-
tronic configurations.

An appropriate representation of its total DIM
Hamiltonian is therefore

3 -1 3 3
A= At s+ > S -3 A
i=1 k=1 i=1 m=a,b i=1
3> H, . (1)
m=a,b

The following convention is used: hydrogen atoms with
i =1 — 3 belong to Hj, while m = a, b for the H, moiety,
H; are for the Hamiltonian of a diatomic fragment
composed from ith and kth atoms and H; denotes the
atomic Hamiltonian.

From the zero-order approximation for infinitely
separated moieties, we have

Hy = Hy, + Hy, | 2)
with

3 -1
Ay =SS - A, ()

For the perturbation term we get V = H — H.

In order to solve the Schrodinger equation for the
unperturbed Hamiltonian Hy (Eq.2), polyatomic basis
functions (PBF) should be introduced [43]. We define
PBFs as independent products of atomic functions
located on each site of the system. Following Ellison
et al. [27], we use a minimal PBF basis consisting of two
functions, |«);, and |f);, describing the spin state of the
hydrogen atom located at the ith site and one function,
|0); which indicates that site i is occupied by the proton.
This PBF set is considered as orthonormal [27].

The solution of the DIM problem for Hj is trivial. It
gives the valence bond singlet function

$2 = ([2)gl By = IB)al)s)/ V2 ()

as the eigenvector and the ground singlet 'TF state,
Sap = S(Ryp) of Hy as the eigenvalue. The DIM problem
for HY is described in detail in Refs. [27, 29, 32]. Using
the basis set composed of functions (Eq. 5) for (i,),
(i, k) and (k, j) pairs of hydrogen atoms multiplied by the
|0) function located at sites k, j and i, respectively, it is
easy to evaluate the corresponding 3 x 3 matrix for the
DIM Hamiltonian (Eq. 3). Its diagonalization gives the
ground-state energy Ej3 of the H] moiety as a function of
the R;;, le and R;; distances and the eigenvector ¢; as
an expansion over these functions, with the coefficients
C; depending on the same variables [27, 29, 32]. The
squared coefficient C; represents the probability of
finding the proton on site i, or the partial charge of
the hydrogen atom at this site.

To a first-order approximation, the interaction PES is
given by

Uit = <¢2¢3‘V|¢2¢?> . (6)

Both ¢, and ¢; are expanded over the products of the
atomic wave functions and ¥ is expressed as the sum of
diatomic and atomics Hamiltonians. By applying the
procedure pioneered by Ellison et al. [27] one obtains
after analytical calculations
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Here Gy, Uiy, and Ty, Sy, are the energies of the H ion
in the X' and %X, states and the energies of the H,
molecule in the 32* and 'T7 states, respectively, as
functions of the R,m distances between the i and m
hydrogen atoms.

The first and second sums run over the sites of the Hy
and H, moieties, respectively. The first term in the
brackets descrlbes the interaction of the proton located
on site i with the atoms of the H, moiety, while the
second term corresponds to the interaction of the
remaining part of H;r (i.e., H, molecule) with the H,
moiety. The C; coefficients weight individual interactions
according to the probability of finding the proton on site
i. The final form of the HY DIM PT1 PES is

E=E;+ S, + Upn , (8)

where Ej is the ground-state energy of H7 as a function
of the three 1nterat0m1c distances, Sab = S(Ryp) is the
ground singlet !X state of H, and Uy, is the interaction
term as is given by Eq. (7).

3.2 Comparison of the DIM PTI model
and ab initio calculations

For implementing the DIM PT1 approach (Eq. 8) for
H? we use the H, and Hj potentials from Refs. [32, 44,
45 46]. For the Hy m01ety, both the standard DIM
approach [27, 29] and the DIM/3B approach described
in Ref. [32] were implemented. The 3B correction
introduced in the latter does not affect the interaction
PES (Eq. 7), keeps the C; coefficients unchanged, but
improves the energy E3 and its dependence on internal
coordinates. As a result, the DIM method provides
reasonable results although markedly overestimates the
H7 bond length, while the 3B correction brings the
results in complete accord with experimental data.
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We summarize the optimized geometries and energies
of the stationary points on the DIM PT1 PES in Table 5
and Fig. 2. Surprisingly, this simple model is able to
reproduce exactly the same set of stationary points with
the same symmetry as the ab initio methodology. This
shows that the analytical representation of the potential
function provided by the model is topologically correct.
However, there is no quantitative agreement between the
model and ab initio results. Indeed, the DIM PT1 model
tends to give much lower electronic energies and does
not follow the order of conformers established in higher-
level ab initio calculations. It predicts the lowest energy
for the 9-C; conformer, while the ground state 1-C,, one
appears to be only sixth in the dense manifold of other
structures. In addition, in contrast to the ab initio cal-
culations, the model does not give the prominent energy
spacing between various conformers. The energies of
eight structures fall within a gap of around 0.001 au and
only the 2-D,; and 4-Dy;, structures have much higher
energy, however, this is a limitation of the model itself.
These structures represent the saddle points for the
proton transfer, when the proton is situated in the
middle of two hydrogen molecules. In the present dia-
batic formulation, the saddle points correspond to the
crossing seam of two DIM PT1 surfaces in which the
proton is explicitly assigned to one or another hydrogen
molecule. This is the reason for artificially too high
barriers for proton transfer (the energies and geometries
of the 2-D,; and 4-D,;, saddle points quoted in Table 5
were determined not by a global search, but by energy
minimization along the crossing seam). To describe the
adiabatic PESs, evaluation of diabatic coupling between
two PESs is needed. Further, there is a huge difference in
the locations of stationary points. The somewhat longer
internuclear distances in the H] moiety reflect the defi-
ciency of DIM, while the strong overestimation of the
interfragment distance D means that the DIM PT1
model tends to underestimate the interaction between
the moieties. DIM/3B correction does not influence the
results a lot, giving only a shift in energy and the
geometry of Hj . It amounts, for instance, to —2.521482
au and R; = R, = 0.8731 A for the 9-C, conformer. It is
worth noting that the DIM PT1 results agree better with
SCF/DZ calculations than with our QCISD(T) values.
For example, SCF/DZ calculation predicts [3] an energy
of —2.407823 au and 1.7510 A for the interfragment
distance D for the 1-C5, conformer.

Table 5. Geometries and ener-

gies for ten stationary points on Conformer Energy (au) Internal coordinates
+ ’ - 1 o ° o o

the frst-order dintomosin > RA RA adw DA PR

?z)‘}l]fj”}eTli)er;“(fg;tlon theory g 225323036 0.92237 0.92237 60.0 3.01190 0.74174
7-Csy 225320165  0.92308 0.92173 59.9 2.90201 0.74179
5-Cy, 225319935 0.92294 0.92174 59.9 2.94641 0.74177
10-Cs, ~2.5318808 092239 0.92239 60.0 2.89808 0.74113
3-Cy, 225316969 092135 0.92272 59.9 2.82973 0.74177
1-Cay 225316962 0.92134 0.92272 59.9 2.82875 0.74177
8-Cs, 225316097  0.92222 0.92222 60.0 2.82386 0.74116
6-Co, 225313646 0.92151 0.92267 59.9 2.68014 0.74128
2D,y 24082317 135126 0.81862 7.4 1.28778 0.81862
4-D,, ~2.4081957 135235 0.81843 7.4 1.28895 0.81843
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The harmonic vibrational frequencies for the 1-Cs,
minimum structure of HY calculated within the DIM
PT1 model and the QCISD(T)/cc-pVQZ methodology
are compared with the results of full CI/DZ and SCF/
DZ calculations from Ref. [3] in Table 6. The frequen-
cies evaluated using the DIM PT1 model are in better
accord with the SCF and CI results in the double-zeta
basis (note that CI/DZ calculations also gave one
imaginary frequency). However, the DIM PT1 model
predicts too small shifts of the frequencies corresponding
to the H and H, monomers in the cluster and too low
frequencies of intermolecular modes. In agreement with
previous observations, this indicates the underestimation
of intermolecular interaction within the model. Further,
as should be expected, the DIM PT1 model predicts a
very low binding energy (2.93 kcal/mol for DIM/3B
PT1) that is closer to the estimates of SCF/DZ calcula-
tions (Table 4). The quantitative failure of this approach
indicates the importance of the correct treatment of the
long-range electrostatic interactions, first of all the
charge-induced dipole and charge-quadrapole terms. It
should be noted that inclusion of such terms in the
functional form means that structures such as 1-C,, are
expected to be more attractive (see Sect. 2.2). An esti-
mate of the contribution of the charge-induced dipole
and charge-quadrapole interactions to the binding en-
ergy for the 1-C,, configuration is about 3 kcal/mol (the
values for the parameters are taken from Refs. [5, 47]).

4 Conclusions

The equilibrium structures, the features of the intermo-
lecular interaction at intermediate and long distances
and the stability of the HI cluster were investigated
using a high-level ab initio method. The QCISD(T)/cc-
pVQZ calculations, the most accurate to date for all
conformers of the HY cluster, are in good accord with
available experimental data.

An analytical description of the PES was attempted
by means of DIM PT1 for intermolecular interactions.
The simplest version of the DIM PT1 model, parame-
terized by the true diatomic potentials of H, and
Hj, was implemented to characterize the symmetries,
geometries and energies of H stationary points, as well

Table 6. Harmonic vibrational frequencies for the 1-C,, conformer
of HY (em™") calculated at the QCISD(T)/cc-pVQZ, full CI/DZ [3]
and SCF/DZ [3] levels of theory in comparison with DIM PT1
prediction. The ab initio frequencies are unscaled

Normal QCISD(T)/ Full SCF/DZ DIM PTI
mode cc-pVQZ CI/DZ

o 4118 (A) 4209 4430 4400
3 3670 (A)) 3583 3712 3608
3 2134 (By) 2602 2723 2455
Wy 1840 (A)) 2669 2779 2486
s 1174 (By) 739 719 379
g 868 (B)) 515 534 184
7 815 (By) 546 511 132
wg 502 (A)) 462 442 102
Wy 206 (Ay) 37i 104 46i

as vibrational frequencies and the dissociation energy.
These data were compared with QCISD(T)/cc-pVQZ
ab initio calculations. It was found that the model is able
to reproduce the number and the symmetry of the sta-
tionary points, but not always their nature and relative
energies. In general, the main drawback of the DIM PT1
model is the underestimation of the interaction strength
between the fragments. Obviously, the main limitation
of the DIM PT1 model is the inability to treat collective
electrostatic interactions. For a proper treatment of the
HZ potential surface a minimum requirement should be
a combination of the DIM PT1 model with long-range
terms. Work in this direction is currently in progress.
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